Amplitude-Frequency Hysteresis in Flexural-Mode Vibrating RF MEMS Resonators
References:
- Ch. 28 (Anharmonic Oscillations) and Ch. 29 (Resonance in Non-Linear Oscillations) in Mechanics by L. D. Landau and E. M. Lifshitz, Butterworth-Heinemann, January 15, 1976
- http://www.kaajakari.net/~ville/research/tutorials/nonlinear_resonators_tutorial.pdf
(%i1) |
declare([%kappa,%mu,%nu,%rho,%omega,C_0,E,g_0,k_1,k_3,l,t,V_S,w],[constant,real,scalar])$ assume(%kappa>0)$ assume(%mu>0)$ assume(%nu>0)$ assume(%rho>0)$ assume(%omega>0)$ assume(C_0>0)$ assume(E>0)$ assume(g_0>0)$ assume(k_1>0)$ assume(k_3>0)$ assume(l>0)$ assume(t>0)$ assume(V_S>0)$ assume(w>0)$ |
1 Amplitude-Frequency Coefficient
(%i16) | %kappa:3*k3eff/(8*k1eff)*%omega-5*k2eff^2/(12*k1eff^2)*%omega; |
(See: Eq. 28.13 in Mechanics by L. D. Landau and E. M. Lifshitz, Butterworth-Heinemann, January 15, 1976)
1.1 One-Sided Actuation
(%i17) | Fe:taylor(1/2*(C_0*g_0)/(g_0-z)^2*(V_S+v_in)^2,z,0,9); |
(%i18) |
%kappa_k1:ev(%kappa, k1eff=k_1-V_S^2*C_0/g_0^2, k2eff=-3/2*V_S^2*C_0/g_0^3, k3eff=k_3-2*V_S^2*C_0/g_0^4); tex(%)$ |
(%i20) | ratsimp(%kappa_k1); |
1.2 Two-Sided Actuation
(%i21) | Fe:taylor(1/2*(C_0*g_0)/(g_0-z)^2*(V_S+v_in)^2-1/2*(C_0*g_0)/(g_0+z)^2*V_S^2,z,0,9); |
(%i22) |
%kappa_k1:ev(%kappa, k1eff=k_1-2*V_S^2*C_0/g_0^2, k2eff=0, k3eff=k_3-4*V_S^2*C_0/g_0^4); tex(%)$ |
(%i24) | ratsimp(%kappa_k1); |
Rewriting as a function of omega, eliminating l
(%i25) | k1:(32*E*t^3*w)/l^3*(27/49); |
(%i26) | m:0.396*%rho*l*t*w; |
(%i27) | sqrt(k1/m); |
(%i28) | l_omega:sqrt(6.672848092813053*t*sqrt(E/%rho)/omega); |
(%i29) | k1_omega:(32*E*t^3*w)/l_omega^3*(27/49); |
2 Critical Displacement
(%i30) | zc:ratsimp(sqrt(4*%omega)/(sqrt(3*sqrt(3)*Q*abs(%kappa_k1)))); |
(See: Eq. 29.7 in Mechanics by L. D. Landau and E. M. Lifshitz, Butterworth-Heinemann, January 15, 1976)
(%i31) | float(ev(zc,C_0=1.85e-16,g_0=0.33e-6,k_1=1.505e3,k_3=-6.2e15,Q=6.76e3,V_S=70)); |
(%i32) | float(sqrt(1.51e3/2.28e-13)); |
3 Maximum Average Energy Storage (Kinetic and Potential (Elastic))
(%i33) | Emax_k:ratsimp(1/2*(k_1-2*V_S^2*C_0/g_0^2)*zc^2); |
Rewriting as a function of omega, eliminating l
(%i34) | Emax_k_l:ratsimp(ev(Emax_k,k_1=k1_omega)); |
4 Mechanical Q Factor
(%i35) | Q:(sqrt(E*%rho)*t^2*g_0^3)/(%mu*(w*l/2)^2); |
(%i36) | Q_l:(sqrt(E*%rho)*t^2*g_0^3)/(%mu*(w*l_omega/2)^2); |
Q varies with 1/w^2 if %omega is held fixed. Q goes up is w is scaled.
5 Dissipated Power
(%i37) | P_diss:ratsimp(ev(%omega*Emax_k_l/Q,Q:Q_l)); |
P_diss varies with w^6 if %omega is held fixed. P_diss goes down if w is scaled.